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1 Introduction

These notes introduce some fundamental ideas in the representation theory of finite groups and
illustrate how character theory can be used to study random walks on groups. We will cover:

• The definition of a representation and basic facts about group algebras.

• Projection operators onto invariant subspaces.

• The Fourier transform (or discrete Fourier analysis) on a finite group.
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• Character theory, with a focus on the symmetric group Sn.

• Applications of representation theory to random walks, mixing times, and bounding conver-
gence to the uniform distribution.

Our aim is to present this material in a way that is accessible to an undergraduate student with
some background in linear algebra and group theory.

2 Representations of Finite Groups

2.1 Basic Definitions

Definition 2.1 (Representation). Let G be a finite group. A representation of G over a field C is
a group homomorphism

π : G → GL(V ),

where V is a finite-dimensional vector space over C, and GL(V ) denotes the group of all invertible
linear transformations on V . The dimension of V is called the dimension of the representation.

Definition 2.2 (Subrepresentation). If π : G → GL(V ) is a representation and W ⊆ V is a
subspace such that π(g)(W ) ⊆ W for all g ∈ G, then W is called a G-invariant subspace of V , and
the restriction of π to W is called a subrepresentation.

Definition 2.3 (Irreducible Representation). A nonzero representation π : G → GL(V ) is irre-
ducible if the only G-invariant subspaces of V are {0} and V itself. Equivalently, π is irreducible if
it has no nontrivial subrepresentations.

Theorem 2.4 (Maschke’s Theorem). If G is a finite group and char(C) = 0 (or more generally
if |G| is invertible in the field), then every finite-dimensional representation of G over C is com-
pletely reducible. That is, any representation can be decomposed as a direct sum of irreducible
representations.

2.2 Group Algebra and the Regular Representation

Definition 2.5 (Group Algebra). Let G be a finite group. The group algebra C[G] is the vec-
tor space over C with basis {g | g ∈ G} and multiplication linearly extended from the group
multiplication. An element of C[G] looks like∑

g∈G
αg g, αg ∈ C.

Definition 2.6 (Regular Representation). The group G acts on C[G] by left multiplication:

h ·

∑
g∈G

αgg

 =
∑
g∈G

αg (hg).

This action defines a representation, called the left regular representation.

A key fact from Maschke’s Theorem is that the regular representation decomposes as

C[G] ∼=
⊕
ρ∈Ĝ

(ρ⊗ Cdim(ρ)),

where Ĝ is the set of (inequivalent) irreducible representations of G, and each ρ appears with
multiplicity dim(ρ).
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3 Projection Operators and Invariant Subspaces

A crucial tool in representation theory is the projection operator onto the subspace of G-invariant
vectors.

Definition 3.1 (Invariant Subspace). If π : G → GL(V ) is a representation, the subspace of
invariant vectors is

V G = {v ∈ V | π(g)(v) = v for all g ∈ G}.
Proposition 3.2 (Projection Onto Invariants). Let π : G → GL(V ) be a representation of a finite
group G. Define the operator

P =
1

|G|
∑
g∈G

π(g).

Then P is a projection onto V G. In other words,

P 2 = P, Im(P ) = V G.

Proof. First note that P commutes with every π(h):

π(h)P =
1

|G|
∑
g∈G

π(h)π(g) =
1

|G|
∑
g∈G

π(hg) =
1

|G|
∑
g′∈G

π(g′) = P,

where we substituted g′ = hg. Hence P is in the commutant of {π(g)}g∈G.
Next,

P 2 =
1

|G|2
∑

g,h∈G
π(g)π(h) =

1

|G|2
∑

g,h∈G
π(gh) =

1

|G|
∑
t∈G

π(t) = P,

so P is idempotent.
To see that Im(P ) = V G, observe that for v ∈ V G, we have π(g)(v) = v for all g, thus

P (v) =
1

|G|
∑
g∈G

π(g)(v) =
1

|G|
∑
g∈G

v = v.

Hence v ∈ Im(P ), so V G ⊆ Im(P ). Conversely, if v ∈ Im(P ), then v = P (w) for some w, and v is
G-invariant because P commutes with all π(g). Thus Im(P ) ⊆ V G.

4 Fourier Transform on a Finite Group

For an abelian group G, the classical discrete Fourier transform diagonalizes convolution opera-
tors in C[G]. More generally, if G is non-abelian, we can still decompose the group algebra into
irreducible blocks. This is sometimes called the Fourier transform on G.

Proposition 4.1. Let G be a finite group, and let {ρi}ri=1 be the irreducible representations of G,
each of dimension di. Then we have a decomposition

C[G] ∼=
r⊕

i=1

Matdi(C),

where an element of C[G] acts by left multiplication on each block, and the isomorphism is given
by collecting matrix coefficients of the irreps. Under this isomorphism, a convolution operator (by
a function f ∈ C[G]) becomes block diagonal in the irreducible basis, by Schur’s Lemma.

Remark 4.2. For abelian groups, all irreps have dimension 1, so the decomposition is simply a direct
sum of 1-dimensional spaces, which recovers the classical discrete Fourier transform.
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5 Character Theory and Sn

5.1 Characters

Definition 5.1 (Character). If π : G → GL(V ) is a representation, its character χπ is the function
χπ : G → C given by

χπ(g) = Trace
(
π(g)

)
.

Definition 5.2 (Irreducible Characters). If π is an irreducible representation, then χπ is called
an irreducible character. Characters of irreducible representations are fundamental in the study of
representations.

Key properties of characters include:

• Characters are class functions: χπ(hgh
−1) = χπ(g) for all g, h ∈ G.

• Orthogonality relations: For irreducible characters χi, χj of G,

1

|G|
∑
g∈G

χi(g)χj(g) = δij .

5.2 The Symmetric Group Sn

The irreducible representations of the symmetric group Sn are classified by partitions of n. If
λ = (λ1, λ2, . . . , λk) is a partition of n, there is a corresponding irreducible representation V λ

often constructed via the Young diagram and the Specht modules approach. The character χλ of
this irreducible representation can be computed by combinatorial methods (e.g. the Murnaghan–
Nakayama rule).

Example 5.3 (Character Table for S3). The group S3 has three conjugacy classes:

C1 = {e}, C2 = {transpositions}, C3 = {3-cycles}.

The irreps are:

(1) The trivial representation χtriv, (2) The sign representation χsgn, (3) The 2-dimensional standard representation χstd.

Their character table is:

e (12) (123)

χtriv 1 1 1
χsgn 1 −1 1
χstd 2 0 −1

For larger n, one organizes the irreps of Sn via partitions λ ⊢ n. The character values can
be computed using various combinatorial formulas (e.g. the Frobenius formula, the Murnaghan–
Nakayama rule, etc.).
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6 Random Walks on Groups and Mixing Times

6.1 Random Walk Setup

A random walk on a finite group G is determined by a probability measure p on G. Starting at
the identity, one chooses a group element g with probability p(g) and moves there; repeating this
process yields a Markov chain whose states are elements of G. We often study the distribution

p(k) = p ∗ p ∗ · · · ∗ p (k times),

where ∗ denotes the convolution in C[G]. We want to know how quickly p(k) converges to the
uniform distribution u(g) = 1

|G| .

6.2 Representation-Theoretic Approach to Mixing

One powerful method to analyze mixing is to expand p in terms of irreducible characters. For each
irreducible representation ρi with character χi, one can write

p(g) =
1

|G|
∑
i

di⟨χi, p⟩χi(g),

where di = dim(ρi) and ⟨χi, p⟩ = 1
|G|

∑
g∈G χi(g)p(g). Then

p(k)(g) = (p ∗ p(k−1))(g)

and repeated convolution has a spectral interpretation: each irreducible subrepresentation may
contract at a rate given by the eigenvalue associated with that representation.

Remark 6.1. In many random walk analyses, the second-largest eigenvalue in magnitude of the
transition operator (acting on an appropriate subspace) determines the mixing rate. Representation
theory provides a systematic way to identify these eigenvalues for many symmetric measures p.

6.3 Example: Random Transposition Shuffle on Sn

Consider the random walk on Sn given by picking a random transposition (i j) (with uniform proba-
bility among all

(
n
2

)
transpositions) and multiplying the current permutation by that transposition.

This is a classic random walk used to model card shuffling.

Theorem 6.2 (Mixing Time of Random Transposition Shuffle). For the random transposition
shuffle on Sn, the total variation distance from the uniform distribution u satisfies∥∥∥p(k) − u

∥∥∥
TV

≤ C e−c k/n

for some positive constants C and c. More refined analysis shows that the cutoff (sharp transition
to near-uniform) occurs around 1

2n log n steps.

Sketch of proof. One uses the representation theory of Sn to show that all non-trivial irreducible
representations (except the trivial one) have characters that lead to eigenvalues strictly less than
1. In fact, the second-largest eigenvalue in magnitude is on the order of 1 − O(1/n), giving an
exponential convergence rate in k/n. A more delicate analysis locates the exact cutoff around
1
2n log n.
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Cutoff Phenomenon for the Random Transposition Shuffle on Sn

We analyze the mixing time of the random transposition shuffle on Sn, which consists of repeat-
edly selecting a random transposition and multiplying the current permutation by it. Our goal is
to show that this Markov chain exhibits a cutoff at time 1

2n log n.

Proof. We analyze the mixing time using spectral decomposition via representation theory.

Step 1: Transition Matrix and Group Algebra The transition matrix p satisfies:

p(σ, τ) =


2

n(n−1) , if τ = σ(i j) for some transposition (i j),

1− 2
n(n−1) , if τ = σ,

0, otherwise.

Since transpositions generate Sn, the Markov chain defined by p is irreducible and aperiodic.

Step 2: Spectral Decomposition via Representations Consider the group algebra C[Sn],
which decomposes as:

C[Sn] ∼=
⊕
λ⊢n

V λ ⊗ V λ.

The transition operator p acts as a convolution operator on C[Sn], and its eigenvalues correspond
to irreducible representations.

Step 3: Eigenvalues of p The eigenvalues of p are indexed by partitions λ ⊢ n. The trivial
representation λ = (n) corresponds to the uniform stationary distribution with eigenvalue λ1 = 1.
The second-largest eigenvalue corresponds to the standard representation λ = (n− 1, 1), given by:

λ2 = 1− 2

n− 1
.

More generally, the eigenvalues associated with the irreducible representation λ = (λ1, λ2, . . . )
are:

λλ = 1−
∑

i λi(λi − 1)

n(n− 1)
.

Since λ2 ≈ 1−O(1/n), it determines the mixing rate.

Step 4: Bounding the Total Variation Distance The total variation distance satisfies:∥∥∥pk − u
∥∥∥
TV

≤
∑
λ ̸=(n)

dλe
−k(1−λλ),

where dλ is the dimension of the irreducible representation indexed by λ. The leading term is
determined by the second-largest eigenvalue:∥∥∥pk − u

∥∥∥
TV

≈ e−ck/n.

Setting this to be small (e.g., O(1)), we obtain the cutoff time:

k ≈ 1

2
n log n.
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We have shown that the random transposition shuffle exhibits a cutoff phenomenon at 1
2n log n.

The proof relies on decomposing the transition operator using representation theory and character
theory, identifying the second-largest eigenvalue, and bounding the total variation distance using
eigenvalue decay.

7 Bounding Norms via Markov and Chebyshev Inequalities

To make rigorous statements about convergence, one often uses inequalities relating the random
walk’s deviation from the mean or from uniform. Let f be a function on G with expectation

Ep[f ] =
∑
g∈G

p(g) f(g).

Then
Varp(f) = Ep[f

2]− (Ep[f ])
2.

Classical inequalities such as Markov’s inequality and Chebyshev’s inequality can give bounds on
probabilities of large deviations, which in turn relate to the total variation distance from uniform
if f is chosen suitably (e.g. an indicator function of a certain set).

• Markov’s inequality: If X ≥ 0 is a random variable, then

Pr[X ≥ a] ≤ E[X]

a
.

• Chebyshev’s inequality: If X is a random variable with mean µ and variance σ2, then

Pr[|X − µ| ≥ t] ≤ σ2

t2
.

These bounds are often used in conjunction with spectral estimates (e.g. bounding the variance
of certain class functions under the distribution p(k)) to show that the random walk is close to
uniform after a certain number of steps.

8 Other Examples: Hypercube Random Walk

Another classical example is the random walk on the n-dimensional hypercube G = (Z/2Z)n,
where each step flips one coordinate chosen uniformly at random. The irreducible representations
of (Z/2Z)n are all 1-dimensional (since the group is abelian), and one can compute eigenvalues
easily. It follows that the walk has a mixing time on the order of n log n (in fact, for the simple
random walk that flips each bit with probability 1/2, the cutoff is around n log n). Representation
theory (in this abelian setting, classical Fourier analysis on Z/2Z) underlies this computation.

9 Concluding Remarks

We have seen how representation theory and character theory provide powerful tools for:

• Decomposing the group algebra into irreducible blocks,

• Constructing projection operators onto invariant subspaces,
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• Diagonalizing or block-diagonalizing convolution operators, and

• Analyzing the convergence rates of random walks on groups.

These methods are broadly applicable, from understanding the structure of finite groups themselves
to analyzing algorithms (e.g. card shuffling, random sampling) in combinatorics and computer
science.
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